Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle.

نویسندگان

  • Ying Lu
  • Yong-Rui Wu
  • Bin Han
چکیده

The glyoxylate cycle is a modified form of the tricarboxylic acid cycle that converts C2 compounds into C4 dicarboxylic acids at plant developmental stages. By studying submerged rice seedlings, we revealed the activation of the glyoxylate cycle by identifying the increased transcripts of mRNAs of the genes of isocitrate lyase (ICL) and malate synthase (MS), two characteristic enzymes of the glyoxylate cycle. Northern blot analysis showed that ICL and MS were activated in the prolonged anaerobic environment. The activity assay of pyruvate decarboxylase and ICL in the submerged seedlings indicated an 8.8-fold and 3.5-fold increase over that in the unsubmerged seedlings, respectively. The activity assay of acetyl-coenzyme A synthetase in the submerged seedlings indicated a 3-fold increase over that in the unsubmerged seedlings, which is important for initiating acetate metabolism. Consequently, we concluded that the glyoxylate cycle was involved in acetate metabolism under anaerobic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glyoxylate metabolism in growth and sporulation of Bacillus cereus.

Megraw, Robert E. (Iowa State University, Ames), and Russell J. Beers. Glyoxylate metabolism in growth and sporulation of Bacillus cereus. J. Bacteriol. 87:1087-1093. 1964.-Isocitrate lyase and malate synthetase were found in cell-free extracts of Bacillus cereus T. The patterns of synthesis of enzymes of the glyoxylic acid cycle were dependent upon the medium in which the organism was grown. C...

متن کامل

Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence

Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH t...

متن کامل

Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes.

The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may a...

متن کامل

Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map.

In Escherichia coli, a single operon encodes the metabolic and regulatory enzymes of the glyoxylate bypass. The metabolic enzymes, isocitrate lyase and malate synthase, are expressed from aceA and aceB, and the regulatory enzyme, isocitrate dehydrogenase kinase/phosphatase, is expressed from aceK. We cloned this operon and determined its functional map by deletion analysis. The order of the gen...

متن کامل

Glyoxylate Pathway in the Free-Living Stages of the Entomophilic Nematode Romanomermis culicivorax.

Isocitrate lyase and malate synthetase, key enzymes of the glyoxylate cycle, were present in postparasites of the mermithid nematode Romanomermis culicivorax. Specific activities of enzymes were higher in adult postparasites than in newly emerged juveniles. Isocitrate lyase had a well-defined pH optimum (7.5), whereas malate synthetase functioned optimally over a broad range of alkaline pH (7.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 37 6  شماره 

صفحات  -

تاریخ انتشار 2005